3.364 \(\int \frac{x \sqrt{c+d x^3}}{a+b x^3} \, dx\)

Optimal. Leaf size=64 \[ \frac{x^2 \sqrt{c+d x^3} F_1\left (\frac{2}{3};1,-\frac{1}{2};\frac{5}{3};-\frac{b x^3}{a},-\frac{d x^3}{c}\right )}{2 a \sqrt{\frac{d x^3}{c}+1}} \]

[Out]

(x^2*Sqrt[c + d*x^3]*AppellF1[2/3, 1, -1/2, 5/3, -((b*x^3)/a), -((d*x^3)/c)])/(2*a*Sqrt[1 + (d*x^3)/c])

________________________________________________________________________________________

Rubi [A]  time = 0.0373927, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {511, 510} \[ \frac{x^2 \sqrt{c+d x^3} F_1\left (\frac{2}{3};1,-\frac{1}{2};\frac{5}{3};-\frac{b x^3}{a},-\frac{d x^3}{c}\right )}{2 a \sqrt{\frac{d x^3}{c}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[c + d*x^3])/(a + b*x^3),x]

[Out]

(x^2*Sqrt[c + d*x^3]*AppellF1[2/3, 1, -1/2, 5/3, -((b*x^3)/a), -((d*x^3)/c)])/(2*a*Sqrt[1 + (d*x^3)/c])

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{x \sqrt{c+d x^3}}{a+b x^3} \, dx &=\frac{\sqrt{c+d x^3} \int \frac{x \sqrt{1+\frac{d x^3}{c}}}{a+b x^3} \, dx}{\sqrt{1+\frac{d x^3}{c}}}\\ &=\frac{x^2 \sqrt{c+d x^3} F_1\left (\frac{2}{3};1,-\frac{1}{2};\frac{5}{3};-\frac{b x^3}{a},-\frac{d x^3}{c}\right )}{2 a \sqrt{1+\frac{d x^3}{c}}}\\ \end{align*}

Mathematica [A]  time = 0.0274026, size = 65, normalized size = 1.02 \[ \frac{x^2 \sqrt{c+d x^3} F_1\left (\frac{2}{3};-\frac{1}{2},1;\frac{5}{3};-\frac{d x^3}{c},-\frac{b x^3}{a}\right )}{2 a \sqrt{\frac{c+d x^3}{c}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x*Sqrt[c + d*x^3])/(a + b*x^3),x]

[Out]

(x^2*Sqrt[c + d*x^3]*AppellF1[2/3, -1/2, 1, 5/3, -((d*x^3)/c), -((b*x^3)/a)])/(2*a*Sqrt[(c + d*x^3)/c])

________________________________________________________________________________________

Maple [C]  time = 0.03, size = 857, normalized size = 13.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(d*x^3+c)^(1/2)/(b*x^3+a),x)

[Out]

-2/3*I/b*3^(1/2)*(-d^2*c)^(1/3)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^
(1/3))^(1/2)*((x-1/d*(-d^2*c)^(1/3))/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)*(-I*(x+1/2/
d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*((-3/2/d*(-d^
2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-
d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)
/d*(-d^2*c)^(1/3)))^(1/2))+1/d*(-d^2*c)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d
*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1
/2)/d*(-d^2*c)^(1/3)))^(1/2)))+1/3*I/b/d^2*2^(1/2)*sum(1/_alpha*(-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(
-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-
d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^
3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-
(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-
d^2*c)^(1/3))^(1/2),1/2*b/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c
*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d
*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{3} + c} x}{b x^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x^3+c)^(1/2)/(b*x^3+a),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^3 + c)*x/(b*x^3 + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x^3+c)^(1/2)/(b*x^3+a),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{c + d x^{3}}}{a + b x^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x**3+c)**(1/2)/(b*x**3+a),x)

[Out]

Integral(x*sqrt(c + d*x**3)/(a + b*x**3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{3} + c} x}{b x^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x^3+c)^(1/2)/(b*x^3+a),x, algorithm="giac")

[Out]

integrate(sqrt(d*x^3 + c)*x/(b*x^3 + a), x)